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1. Introduction

Prologue: To develop mathematical tools to study similarity of objects or
situations is a very important problem in a wide range of topics, from botany to
psychology and more, and involve in particular comparisons of sets, finite or infi-
nite. We mention for instance Paul Jaccard [1], whose studies of comparative floral
distribution lead to the notion of Jaccard index of similarity (coefficient de com-
munauté, in French). To define this index, some notations need to be introduced.
Given a set Ω, we denote by Ω \A the complement of A ∈ P(Ω) in Ω and by A∆B
the symmetric difference of A and B:

(1.1) A∆B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

The Jaccard index is defined by

(1.2) J(A,B) =
CardA ∩B
CardA ∪B

,

where A and B are two finite subsets (not both empty) of a common set Ω. If
A = B = ∅, one sets J to be 0. Note that J(A,B) ∈ [0, 1] and that

(1.3) D(A,B) = 1− J(A,B) =
CardA ∪B − CardA ∩B

CardA ∪B
=

CardA∆B

CardA ∪B
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is a well known distance on sets, (See Definition 2.1 for the notion of distance) similar
to the distance between finite random variables introduced earlier in information
theory by C. Rajski; see e.g. [2] and [3] for the latter. The proofs in these papers
are easily adapted to the case of finite sets. We also note the works [4] and [5] (in
Polish; available online) of Marczewski and Steinhaus, where (1.3) (and counterparts
for functions) is investigated, with applications to study of species growing in forests
(analysis of biotopes). Note that these authors do not mention Jaccard. For another
later proof of the triangle inequality for the Jaccard distance, see e.g. [6].

We also mention the work of Amos Tversky [7], where a representation theorem
to measure similarity between different sets of objects is developed using the decom-
position of A∪B into the non-overlapping sets A \B, B \A and A∆B. For a recent
survey we refer to [8].

Betweenness: In the study of similarity of sets, estimating the betweenness of a
set of features with respect to two other sets of features is a major question, which
can be defined and studied in different ways, depending on the underlying structure.
It involves important analytic tools, such as metric spaces, strictly convex norms
and lattices. In a general metric space one can define the notion as corresponding
to cases of equality in the triangle inequality. In a vector space it is easy to define
betweenness: a vector is between two vectors u and v if it belongs to the closed
interval defined by these two vectors (or equal to u when u = v). In [9], Restle defines
and studies the notion of betweenness of sets. Let Ω be a set and let A,B,C ∈ P(Ω).
Following Restle (See [9, Definition 2 p. 210]) one says that the set C is between the
sets A and B if (Restle writes these two inclusion conditions in a slightly different,
but equivalent, way)

(1.4) A ∩B ⊂ C ⊂ A ∪B,
which can be translated in terms of indicator functions (See (4.1)) as

(1.5) 1A∩B(x) ≤ 1C(x) ≤ 1A∪B(x).

Among other questions Restle is interested in [9] in the case of equality in the tri-
angle inequality in an underlying metric space. To palliate the lack of vector space
structure Restle introduces the notion of linear array of sets.

The paper: In the first part of the present paper we study the counterpart
of some aspects of Restle’s paper in the fuzzy sets theory setting, when indicator
functions of sets are replaced by membership functions, whose definition we now
recall (See for instance [10, 11]):

Definition 1.1. A function from X into [0, 1], i.e. belonging to [0, 1]X , is called a
membership function.

We write a membership function f as µÃ, where by definition, Ã denotes the
fuzzy set defined by f .

In machine learning, a recent research trend consists in replacing the real numbers
by hypercomplex numbers; see for instance [12, 13] for complex numbers, [14] for
bicomplex numbers and [15] for hyperbolic numbers. In the second part of this paper,
and inspired by the work [16] where probabilities are allowed to take values in the set
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of hyperbolic numbers (we will say for short, hyperbolic-valued), we initiate a study
of fuzzy set theory when the membership function is hyperbolic-valued. Definitions
are recalled in the sequel, but we already mention at this stage that hyperbolic

numbers can be seen as the set of matrices of the form

(
a b
b a

)
, where a and b run

through the real numbers.

We therefore address two different audiences, the fuzzy set community and the
hypercomplex analysis community, and will review materials from both fields to
make the paper accessible to both groups.

To pursue we recall that for two (not necessarily Hermitian) matrices A and B in
Cn×n one says that A ≤ B if B −A is a positive semi-definite matrix (one also says
non-negative), i.e. if B − A is Hermitian (symmetric in the case of matrices with
real entries) with non-negative eigenvalues.

Two Hermitian matrices which do not commute cannot be simultaneously diago-
nalized and one cannot define in a natural way their maximum and minimum using
the natural order of matrices. On the other hand, hyperbolic numbers are simultane-
ously diagonalizable and they form a lattice: we can define maximum and minimum
(with respect to the above partial order) of any pair of hyperbolic numbers in the set
of hyperbolic numbers. As a consequence we can extend to the hyperbolic setting
important operations on fuzzy sets which involve maximum and minimum.

As mentioned above in fuzzy set theory one replaces indicator functions of subsets
of a given set X by functions from X into [0, 1]. We introduce a new operator on
membership functions: given f and g two membership functions we associate the
hyperbolic-valued function

(1.6) Mf,g(x) =
1

2

(
f(x) + g(x) f(x)− g(x)
f(x)− g(x) f(x) + g(x)

)
, x ∈ X.

Formula (1.6) defines a new operation on membership functions, and Mf,g takes
values in the counterpart of [0, 1] for hyperbolic numbers. The main properties of
this operation are obtained using the fact that the hyperbolic numbers form a lattice.

We note (See Section 5 for definitions) that already in classical fuzzy set theory,
fuzzy sets have been generalized to sets defined by two membership functions (in-
tuitionistic fuzzy sets, also known as bipolar fuzzy sets, and soft fuzzy sets). The
present extension is different from these approaches.

The hyperbolic numbers form a commuting family of Hermitian matrices, and as
such is simultaneously diagonalizable, as is also immediately seen from (8.1). More
generally recall that a commuting family of complex matrices is simultaneously trian-
gularizable; see [17]. The present theory could be extended to families of commuting
symmetric matrices, or diagonalizable familes of non-symmetric matrices.

The paper consists of ten sections besides the introduction. In Section 2 we
discuss distances associated to positive definite kernels. In Section 3 we discuss be-
tweenness of vectors in a vector space. Betweenness of sets is studied in Section 4. A
few facts from fuzzy set theory are reviewed in Section 5. Betweenness in the fuzzy
setting is studied in Sections 6 and 7, using two different approaches: characteri-
zation in terms of intervals and in terms of strong α-cuts. That the two defintions
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are equivalent is proved in Theorem 7.2. The definition and main properties of
hyperbolic numbers are reviewed in Section 8, while hyperbolic-valued membership
functions are studied in Section 9 and their properties in Section 10. Betweenness
in the setting of hyperbolic-valued membership functions is considered in Section 11.

Finally, a word on notation: a ∧ b and a ∨ b denote respectively the minimum
and maximum of the real numbers a and b, and more genrally the corresponding
operations in a lattice. The matrices(

0 0
0 0

)
and

(
1 0
0 1

)
will be denoted sometimes by 0 for the first and by 1 or I2 for the second.

2. Positive definite kernel and associated metric

We review some facts on positive definite functions relevant to the present work;
for further references we suggest [18, 19, 20]. For completeness we recall:

Definition 2.1. Let E be a set. The map d from E × E into [0,∞) is called a
metric (or a distance), if the following three conditions hold for all x, y, z ∈ E,

d(x, y) = 0 ⇐⇒ x = y(2.1)

d(x, y) = d(y, x)(2.2)

d(x, y) ≤ d(x, z) + d(y, z).(2.3)

(2.3) is called the triangle inequality and the pair (E, d) (or E for short) is called
a metric space.

Positive definite kernels (we will also say positive definite functions, although the
latter terminology is usually used for a smaller class of kernels) whose definition we
now recall, play an important role in machine learning, in particular in the theory
of support vector machines; see [21] for a recent account. Here they are of special
interest because of the metric induced on the set where such a function is defined;
see [22] and see [18, 19, 20] for more information on positive definite kernels.

Definition 2.2. Let E be a set and letK(t, s) be defined on E×E. It is calledpositive

definite on E, if for every choice ofN ∈ N and t1, . . . , tN ∈ E the matrix (K(t`, tj))
N
`,j=1

is positive semi-definite.

The following classical theorem gives a characterization of positive definite func-
tions; one direction is quite clear and in the other one can take H to be the repro-
ducing kernel Hilbert space H(K) with reproducing kernel K(t, s) since

K(t, s) = 〈K(·, s),K(·, t)〉H(K) .

Theorem 2.3. The function K(t, s) is positive definite on E if and only if it factors
via a Hilbert space, i.e. if and only if there exists a Hilbert space H and a function
ft from E into H such that

(2.4) K(t, s) = 〈fs, ft〉H, t, s ∈ E.
4
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For the following proposition see for instance [22], where some explicit examples
are also computed.

Proposition 2.4. Let K(t, s) be positive definite on E with factorization (2.4), and
assume that

(2.5) t 6= s ⇐⇒ ft 6= fs.

Then

(2.6) dK(t, s) =
√
K(t, t) +K(t, s)− 2ReK(t, s)

defines a distance on E.

Proof. In view of (2.4) we have

(2.7) dK(t, s) = ‖ft − fs‖H
and the three conditions for a metric follow, the first one using (2.5). �

Remark 2.5. For ft = K(·, t) the condition (2.5) becomes

t 6= s ⇐⇒ K(·, s) 6≡ K(·, t).

which is in fact a necessary and sufficient condition for (8.20) to define a metric.

As an example of metric dK , let Ω be a finite set and let Card denote the counting
measure. Then, the function

K(A,B) = Card (A ∩B)

is positive definite on P(Ω), and the associated metric is given by
(2.8)

d(A,B) =
√

CardA+ CardB − Card (A ∩B) =
√

CardA∆B, A,B ∈ P(Ω).

In general the square of a metric is not a metric, but the squareroot of a metric is
still a metric. In the present case, it so happens that the square of d(A,B), namely

(2.9) d2(A,B) = CardA+ CardB − Card (A ∩B) = CardA∆B, A,B ∈ P(Ω),

is still a metric (not induced by a positive definite kernel); see Proposition 4.3. A
weighted form of d2 appear already in [23, p. 290-291] in the study of the difference
(called in [23] implicational difference) between traits in an individual. The distance
d2(A,B) play a key role in the present work, and an important difference between
d and d2 will be shown in the paper.

3. Betweenness of vectors

Let V be a real or complex vector space, and let u, v ∈ V. Recall that the interval
defined by u and v is the set of vectors of the form

(3.1) c(t) = u+ t(v − u), t ∈ [0, 1]

which reduces to one point when u = v (no order is assumed, and we can speak for
instance of the interval [0, 1] as well as the interval [1, 0]). It is natural to define:

Definition 3.1. The vector w is said to be between u and v, if w ∈ [u, v].
5
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Remark 3.2. When extra structure is given on V, or for algebraic structures differ-
ent from a vector space structure, the above definition need not be possible, or even
if possible, need not be the best one. For instance, in case of a lattice, a natural
definition would be to replace (3.1) by

u ∧ v + t(u ∨ v − u ∧ v), t ∈ [0, 1].

When moreover a commutative product is available (as in the case of the hyperbolic
numbers), one can replace [0, 1] by its counterpart with respect to the partial order;
see Definition 8.5.

Recall that a norm ‖ · ‖ on a vector space defines a metric via

d(u, v) = ‖u− v‖.

Proposition 3.3. Let (V, ‖ · ‖) be a normed space and let w be between u and v.
Then equality holds in the triangle inequality for d, i.e.

(3.2) d(u, v) = d(u,w) + d(w, v).

Proof. We write w = c(t), where t ∈ [0, 1]. Then we have

d(u, v) = ‖u− v‖,
d(u,w) = ‖u− (u− t(v − u))‖

= t‖u− v‖,
d(w, v) = ‖u+ t(v − u)− v‖

= ‖(1− t)(u− v)‖
= (1− t)‖u− v‖.

Thus (3.2) holds. �

The converse to the above claim is false in general, as can be seen by the example
V = R2 endowed with the norm ‖(x, y)‖∞ = |x| ∨ |y|. Take

u = (0, 0), v = (1, 1/4) and w = (1/2, 1/4).

Then

‖u− v‖∞ = ‖u− w‖∞ + ‖w − v‖∞
but w 6∈ [u, v].

The problem in the preceding example is that the norm is not strictly convex. We
give the definition for complex vector spaces, but the same will hold for real vector
spaces.

Definition 3.4. The norm ‖ · ‖ on the real or complex vector space V is called
strictly convex, if the following hold:

‖u+ v‖ = ‖u‖+ ‖v‖ and u 6= 0 =⇒ v = cu for some c ≥ 0.

Proposition 3.5. Assume the norm ‖ · ‖ strictly convex. Then

‖u− v‖ = ‖u− w‖+ ‖w − v‖ ⇐⇒ w ∈ [u, v]
6
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Proof. If u = w the result is trivial. Assume that u 6= w. Since u − v = (u − w) +
(w − v) it follows from the definition that w − v = c(u− w) for some c ≥ 0. Then

w =
c

1 + c
u+

1

1 + c
v = u+ t(v − u)

with (t = 0 corresponds to c −→∞) t = 1
1+c ∈ [0, 1]. �

Examples of norms on the dimensional vector space CN are given by (with z =
(z1, . . . , zN ) and similarly for w)

‖z‖r =


(∑N

n=1mn|zn|r
)1/r

, r ∈ [1,∞)

∨Nn=1mn|zn|, r =∞
where m1, . . . ,mN are strictly positive. They are strictly convex for 1 < r <∞ but
not for r ∈ {1,∞}, and correspond to the distances

Dr(z, w) =


(∑N

n=1mn|zn − wn|r
)1/r

, r ∈ [1,∞)

∨Nn=1mn|zn − wn|, r =∞.
These norms fall into a larger family of norms used [24] for membership functions,

and which may be defined as follows. We will assume that (X,A, σ) is a measured
space, with sigma-algebra A and positive measure σ. The measure σ has the follow-
ing properties (which allows to define these norms on membership functions, since
the latter take values in [0, 1])

Definition 3.6. σ will be a positive measure such that
∫
X
dσ(x) <∞ and with the

condition:

(3.3)

∫
X

|f(x)|dσ(x) = 0 =⇒ f = 0, a.e.

We will say that two sets in A are equivalent (notation: A ∼ B), if σ(A∆B) = 0.
We have an equivalent relation since:
(1) It is reflexive since A∆A = ∅ and then σ(A∆A) = 0.
(2) It is symmetric since A∆B = B∆A.
(3) It is transitive. For A,B,C ∈ N assume A ∼ B and B ∼ C. Then A ∼ C since

A∆C = (A∆B)∆(B∆C)

and
σ(A∆C) = σ((A∆B)∆(B∆C)) ≤ σ(A∆B) + σ(B∆C) = 0.

Definition 3.7. We denote by N0 the elements of A equivalent to ∅ and by A0 =
A/N the space of equivalent classes.

We set, for f measurable and bounded in modulus,

‖f‖r =

(∫
X

|f(x)|rdσ(x)

)1/r

, r ∈ [1,∞)

and
‖f‖∞ = ess supx∈X |f(x)|,

7
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corresponding to distances dr and d∞.

The following result is of limited interest since the number t in (3.4) does not
depend on x, but stresses the difference with the results presented in Sections 5 and
7.

Proposition 3.8. Given (X,A, σ) a measured space, assume that µÃ, µB̃ and µC̃
are measurable membership functions, and that µC̃ is between µÃ and µC̃ in the
sense of Definition 3.1 meaning that there exists t ∈ [0, 1], independent of x, such
that

(3.4) µC̃(x) = tµÃ(x) + (1− t)µB̃ , x ∈ X.

Then

(3.5) dr(µÃ, µB̃) = dr(µÃ, µC̃) + dr(µC̃ , µB̃) ∀r ∈ [1,∞]

The converse statement is true if r 6∈ {1,∞}.

Proof. The direct claim follows from Proposition 3.3. We now turn to the converse
statement. Since r ∈ (1,∞) the norm dr is strictly convex. Then equality in the
triangle inequality means that µC̃ is in the interval defined by µÃ and µB̃ . �

4. Betweenness of sets

In preparation for the following sections we rewrite in a slightly different form
some results from [9]. We first recall a definition.

Definition 4.1. Let X be some non-empty set. A set A ∈ P(X) is uniquely
determined by its indicator function 1A defined by

(4.1) 1A(x) =

{
1 if x ∈ A
0 if x 6∈ A.

There is therefore in classical set theory a one-to-one correspondence between

elements of P(X) and the set {0, 1}X of functions from X into {0, 1}. As is well
known, the indicator functions of the union, intersection and symmetric difference
of two sets A and B and of the complement of a set A are given by

1A∪B = 1A + 1B − 1A1B(4.2)

= 1A ∨ 1B ,(4.3)

1A∩B = 1A ∧ 1B(4.4)

= 1A1B ,(4.5)

1A∆B = 1A + 1B − 2 · 1A1B(4.6)

= 1A ∨ 1B − 1A ∧ 1B(4.7)

= (1A − 1B)2,(4.8)

1X\A = 1− 1A,(4.9)

where we have denoted by ∆ the symmetric difference and by X \A the complement
of the set A.

8
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Lemma 4.2. Let X be a set and let A,B,C ∈ P(X). Then, C is between A and B
in the sense of equation (1.5) if and only if

(4.10) 1C = 1A∩B + 1Z ,

where Z ∈ P(X) is such that

(4.11) Z ⊂ A∆B.

Proof. We rewrite (1.4) as (1.5), i.e.

1A(x) ∧ 1B(x) ≤ 1C(x) ≤ 1A(x) ∨ 1B(x) ∀x ∈ R.
Then there exists t(x) ∈ [0, 1] such that

1C(x) = 1A(x) ∧ 1B(x) + t(x) (1A(x) ∨ 1B(x)− 1A(x) ∧ 1B(x))︸ ︷︷ ︸
1A∆B(x)

.

From the above, t(x) can be chosen to belong to {0, 1}. Define a set Z via

1Z(x) = t(x) (1A(x) ∨ 1B(x)− 1A(x) ∧ 1B(x))︸ ︷︷ ︸
1A∆B(x)

.

Thus Z ⊂ A∆B. The converse is clear. �

Given two sets A and B in P(Ω) we note that the interval [1A, 1B ] is not made
of indicator functions in general, but consists of the functions of the form

(4.12) ft(x) = t1A(x) + (1− t)1B(x)

when t varies in [0, 1]. A more interesting case is when t is allowed to vary with x:

(4.13) ft(x) = t(x)1A(x) + (1− t(x))1B(x),

where now t is a function from X into [0, 1]. These functions are examples of mem-
bership functions, which are the main tool in fuzzy set theory. The interpretation
of (4.13) in terms of norms uses the α-cuts. See Section 7 below.

For the following result, see also Restle [9], where the importance of the equality
case in the triangle inequality is stressed out.

Proposition 4.3. Let (X,A, σ) be as above with σ a measure on X satisfying the
hypothesis of Definition 3.6, and let A0 be as in Definition 3.7. Then

Dσ(A0, B0) =

∫
X

(1A(x)− 1B(x))2dσ(x) = σ(A∆B), A,B ∈ A0

(where A ∈ A belongs to the equivalence class of A0 and B ∈ A belongs to the
equivalence class of B0) is a metric on A0. If X has finite cardinal one can take
A0 = P(X).

Proof. The various definitions do not depend on the chosen representative in a given
equivalence class. Assume that Dσ(A0, B0) = 0. Then by (3.3), we have σ(A∆B) =
0 and thus A0 = B0. It is clear that Dσ(A0, B0) = Dσ(B0, A0). We now check the
triangle inequality and first note that (with C0 ∈ A0 and C in the equivalence class
C0)

(4.14) (1A−1C)2(x)+(1C −1B)2(x)− (1A−1B)2(x) = 2(1A−1C)(x)(1B−1C)(x)
9
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for x ∈ X. Thus we have

Dσ(A0, C0) +Dσ(B0, C0)−Dσ(A0, B0) =

=

∫
X

{
(1A − 1C)2(x) + (1C − 1A)2(x)− (1A − 1B)2(x)

}
dσ(x)

= 2

∫
X

(1A − 1C)(x)(1B − 1C)(x)dσ(x).

(4.15)

But
(4.16)

(1A−1C)(x)(1B−1C)(x =


(1− 1C(x))2 = 1− 1C(x), x ∈ A ∩B

−1C(x)(1− 1C(x)) = 0, x ∈ B \A
(1− 1C(x))1C(x) = 0, x ∈ A \B

1C(x)2 = 1C(x), x ∈ X \ (A ∪B).

So we get∫
X

(1A− 1C)(x)(1B − 1C)(x)dσ(x) =

∫
A∩B

(1− 1C(x))dσ(x) +

∫
X\(A∪B)

1C(x)dσ(x)

Hence (4.15) becomes

Dσ(A0, C0)+Dσ(B0, C0)−Dσ(A0, B0) =

∫
A∩B

(1−1C(x))dσ(x)+

∫
X\(A∪B)

1C(x)dσ(x),

which is non-negative. Therefore the triangle inequality holds for Dσ. �

Proposition 4.4. In the notation of the previous proposition, C0 is between A0 and
B0 for the metric Dσ(A0, B0) if and only if the triangle inequality is an equality:

(4.17) Dσ(A0, B0) = Dσ(A0, C0) +Dσ(C0, B0)

Proof. By the triangle inequality for Dσ and using (4.14), we have

0 ≤
∫
X

{1A∆C(x) + 1C∆B(x)− 1A∆B(x)} dσ(x)

=

∫
X

{
(1A − 1C)2(x)− (1C − 1B)2(x)− (1A − 1B)2(x)

}
dσ(x)

= 2

∫
X

(1A − 1C)(x)(1B − 1C)(x)dσ(x).

Then

0 ≤
∫
X

{1A∆C(x) + 1C∆B(x)−A∆B (x)} dσ(x)

= 2

{∫
A∩B

(1− 1C(x))dσ(x) +

∫
X\(A∪B)

1C(x)

}
dσ(x)

Thus (4.17) holds if and only if∫
A∩B

(1− 1C(x))dσ(x) =

∫
X\(A∪B)

1C(x)dσ(x) = 0

10
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that is, if and only if

1C(x) = 1, x ∈ A ∩B and 1C(x) = 0, x 6∈ A ∪B,
i.e. if and only if (1.4) is in force. �
√
Dσ is also a metric on A (maybe more natural a priori since it arises from a

positive definite kernel), but we have:

Proposition 4.5. Let A0, B0, C0 ∈ A0. It holds that

(4.18)
√
Dσ(A0, B0) =

√
Dσ(A0, C0) +

√
Dσ(C0, B0)

if and only if C0 = A0 or C0 = B0.

Proof. Assume that (4.18) is in force. Taking square and taking into account (4.14)
we obtain, with A,B,C being in the equivalence classes of A0, B0 and C0 respectively

(4.19) − 2

∫
X

(1A − 1C)(x)(1B − 1C)(x)dσ(x) = 2
√
Dσ(A0, C0)

√
Dσ(C0, B0).

Then we are in the equality case in the Cauchy-Schwarz inequality. If C = A, then
there is nothing to prove. Assume that C0 6= A0. Then there exists u ∈ C such that

(4.20) (1B − 1C) = u(1C − 1A), σ a.e.

Plugging this into (4.19), we obtain

u

∫
X

(1C(x)− 1A(x))2dσ(x) = |u| ·
∫
X

(1C(x)− 1A(x))2dσ(x).

Since A 6= C it follows that u ≥ 0.

If u = 0 in (4.20), then we have B = C. Thus B0 = C0. We now show by
contradiction that we cannot have u 6= 0 since C 6= A. Assume thus u 6= 0 (and so
u > 0) and first suppose that there is x ∈ C \A. Then (4.20) becomes

(1B − 1) = u.

The left handside of this equality is less or equal to 0 while the right handside is
strictly positive, which is impossible. Assume now that there is x ∈ A \ C Then
(4.20) becomes

1B = −u
which is impossible for the same reason as above. �

5. Fuzzy set theory

In a way similar to information theory, which originates in 1948 with Shannon’s
paper [25], one can pinpoint the origin of fuzzy set theory and logic with the papers
of Zadeh [11], but it is good to mention the earlier works on multi-valued logic of
Lukasiewicz [26]. For the convenience of the reader we review some definitions from
fuzzy set theory, and send the reader to the books [10, 27, 28, 29, 30] for further
information.

The set of indicator functions is {0, 1}X , and is therefore included in the set of
membership functions (See Definition 1.1 for the latter). Let N ∈ N. We note that
to any function from [0, 1]N into [0, 1] one can define a map which to N membership
functions associates a new membership function.

11
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Each of the functions (4.2)-(4.7) (and to a certain extent also (4.9)) have nu-
merous possible extensions in the setting of membership functions. This degree of
freedom is one of the main strengths of fuzzy set theory. As a first example, consider
the intersection, with indicator function 1A1B . When 1A and 1B are replaced by
membership functions µÃ and µB̃ , two different extensions of intersection of classical
sets will be given by µÃ ∨ µB̃ and µÃµB̃ .

The maximum and minimum of two membership functions µÃ and µB̃ are also

membership functions, corresponding respectively to the union Ã∪B̃ and intersection

Ã ∩ B̃ of the fuzzy sets Ã and B̃ (See [10, §3.1 p. 30]).

The product µÃµB̃ is also a membership functions, corresponding to a fuzzy set

called algebraic product of the fuzzy sets Ã and B̃; see [10, §3.3 p. 33]).

For µÃ a membership function, 1−µÃ is still a membership function, correspond-

ing to a fuzzy set called the fuzzy complement of Ã, and denote by cl(Ã).

More generally, one can take functions with values in a lattice; this was already
done by Zadeh’s student Goguen, see [31], and later also developped by Atanassov
in his theory of intuitionistic sets; see [32]. An intuitionistic fuzzy set defined on a
set X is defined by two functions from X into [0, 1], respectively called membership
function and non-membership function. In the second part of this paper (Sections
8-11) we will consider the lattice of hyperbolic numbers.

6. Betweenness in the fuzzy case

Definition 6.1. Let µÃ, µB̃ and µC̃ be membership functions. We say that µC̃ is
pointwise between µÃ and µB̃ , if

(6.1) µÃ(x) ∧ µB̃(x) ≤ µC̃(x) ≤ µÃ(x) ∨ µB̃(x) ∀x ∈ X.

In other words, for every x ∈ X, µC̃(x) belongs to the interval determined by
µÃ(x) and µB̃(x).

As it should be this definition reduces to (1.4) in the crisp case since then we have

1A∩B(x) = µÃ(x) ∧ µB̃(x) and 1A∪B(x) = µÃ(x) ∨ µB̃(x) ∀x ∈ R.

The counterpart of Lemma 4.2 is as follows:

Proposition 6.2. Let µÃ, µB̃ and µC̃ be membership functions. Then, µC̃ is point-
wise between µÃ and µB̃ if and only if

(6.2) µC̃(x) = µÃ(x) ∧ µB̃(x) + µZ̃(x),

where µZ̃ is a membership function satisfying

(6.3) µZ̃(x) ≤ µÃ(x) ∨ µB̃(x)− µÃ(x) ∧ µB̃(x).

Proof. Assume first that (6.2) and (6.3) are in force. (6.2) implies that

µC̃(x) ≥ µÃ(x) ∧ µB̃(x),
12



Alpay and Alpay /Ann. Fuzzy Math. Inform. x (202y), No. x, xxx–xxx

and (6.2) and (6.3) together lead to

µC̃(x) ≤ µÃ(x) ∧ µB̃(x) + µÃ(x) ∨ µB̃(x)− µÃ(x) ∧ µB̃(x)

= µÃ(x) ∨ µB̃(x).

Conversely, assume that (6.1) holds. The formula

µZ̃(x) = µC̃(x)− µÃ(x) ∧ µB̃(x)

defines a membership function which answers the question. �

Remark 6.3. In the crisp case, (6.2)-(6.3) reduce to (4.10)-(4.11).

7. Betweenness in the fuzzy case with α-cuts

Metrics between membership functions using α-cuts have been defined in [33]. For
α ∈ [0, 1] we consider the strong α-cuts A′α associated to the membership function
µÃ, defined by

(7.1) A′α = µ−1

Ã
(α, 1], α ∈ [0, 1].

Note than one also defines α-cuts

(7.2) Aα = µ−1

Ã
[α, 1], α ∈ [0, 1].

See e.g. [30, p. 14]. The arguments in this section will not hold with the latter
definition; strict inequalities are needed.

Definition 7.1. Let µÃ, µB̃ and νC̃ be membership functions from X to [0, 1]. We

say that µC̃ is α-between µÃ and µB̃ , if µ−1

C̃
(α, 1] is between µ−1

Ã
(α, 1] and µ−1

B̃
(α, 1]

for every α ∈ [0, 1].

Theorem 7.2. µC̃ is α-between µÃ and µB̃ if and only if µC̃ is pointwise between
µÃ and µB̃.

Proof. We first assume that µC̃ is α-between µÃ and µB̃ . Let x ∈ X and let
µÃ(x), µB̃(x) and µC̃(x) be the corresponding values of the membership functions.
Since µÃ and µB̃ play a symmetric role we can assume without loss of generality
that

(7.3) µÃ(x) ≤ µB̃(x).

We want to show that (6.1) holds for all x ∈ X, i.e. taking into account (7.3), that

(7.4) µÃ(x) ≤ µC̃(x) ≤ µB̃(x).

Equivalently, we have to show that the following cannot hold:

(7.5) µC̃(x) < µÃ(x)

or

(7.6) µB̃(x) < µC̃(x).

Assume first by contradiction that (7.5) holds. Then x ∈ µ−1

Ã
(µC̃(x), 1]. By (7.3),

we also have x ∈ µ−1

B̃
(µC̃(x), 1]. Thus

µ−1

Ã
(µC̃(x), 1] ∩ µ−1

B̃
(µC̃(x), 1] 6= ∅

13
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since x belongs to the intersection. But

µ−1

C̃
(µC̃(x), 1] =

{
y ∈ X : µC̃(x) < µC̃(y) ≤ 1

}
and so x 6∈ µ−1

C̃
(µC̃(x), 1], leading to a contradiction since, with α = µC̃(x) the

hypothesis of α-betweenness of µC̃ between µÃ and µB̃ gives

µ−1

Ã
(µC̃(x), 1] ∩ µ−1

B̃
(µC̃(x), 1]︸ ︷︷ ︸

contains x

⊂ µ−1

C̃
(µC̃(x), 1].︸ ︷︷ ︸

does not contain x

Assume now by contradiction that (7.6) holds. Then x ∈ µ−1

C̃
(µB̃(x), 1] but

x 6∈ µ−1

B̃
(µB̃(x), 1]. The α-betweenness with α = µB̃(x) gives the the decomposition

µ−1

C̃
(µB̃(x), 1] =

(
µ−1

Ã
(µB̃(x), 1] ∩ µ−1

B̃
(µB̃(x), 1]

)
︸ ︷︷ ︸

∅ since x 6∈ µ−1

B̃
(µB̃(x), 1]

∪Zx

with

Zx ⊂
(
µ−1

Ã
(µB̃(x), 1] \ µ−1

B̃
(µB̃(x), 1]

)
∪
(
µ−1

B̃
(µB̃(x), 1] \ µ−1

Ã
(µB̃(x), 1]

)
.︸ ︷︷ ︸

∅ since x 6∈ µ−1

B̃
(µB̃(x), 1]

See Lemma 4.2 and equation (4.11). Since x 6∈ µ−1

B̃
(µB̃(x), 1] we have that x ∈ Zx

and in particular x ∈ µ−1

Ã
(µB̃(x), 1], so that

(7.7) µÃ(x) > µB̃(x),

contradicting (7.3).

Conversely, assume that µC̃ is pointwise between µÃ and µB̃ . Then for every
x ∈ X,

(7.8) µC̃(x) ∈ [µÃ(x) ∧ µB̃(x), µÃ(x) ∨ µB̃(x)]

is in force. We want to show that, for every α ∈ [0, 1]

(7.9) µ−1

Ã
(α, 1] ∩ µ−1

B̃
(α, 1] ⊂ µ−1

C̃
(α, 1] ⊂ µ−1

Ã
(α, 1] ∪ µ−1

B̃
(α, 1].

We divide this part of the proof in a number of steps.

STEP 1: If there is no x such that µC̃(x) > α, both inclusions in (7.9) are
satisfied.

The second inclusion in (7.9) is now trivial. We show that the first one holds (and
reduces to ∅ = ∅). By hypothesis,

(7.10) µC̃(x) ≤ α

for all x ∈ X. Assume by contradiction that there is y ∈ µ−1

Ã
(α, 1]∩µ−1

B̃
(α, 1]. Then

α < µÃ(y) ≤ 1 and α < µB̃(y) ≤ 1.

In particular

(7.11) α < µÃ(y) ∧ µB̃(y).
14



Alpay and Alpay /Ann. Fuzzy Math. Inform. x (202y), No. x, xxx–xxx

By the hypothesis on pointwise betweenness

(7.12) µÃ(y) ∧ µB̃(y) ≤ µC̃(y)

Equations (7.10), (7.11) and (7.12) lead to

α < µÃ(y) ∧ µB̃(y) ≤ µC̃(y) ≤ α,

which cannot be.

STEP 2: The first inclusion in (7.9) holds.

If µ−1

Ã
(α, 1] ∩ µ−1

B̃
(α, 1] = ∅ the first inclusion is trivially met. Assume now

that there is x ∈ µ−1

Ã
(α, 1] ∩ µ−1

B̃
(α, 1]. Then x is such that µÃ(x) ∈ (α, 1] and

µB̃(x) ∈ (α, 1]. Thus

α < µÃ(x) ≤ 1 and α < µB̃(x) ≤ 1.

From µÃ(x) ∧ µB̃(x) ≤ µC̃(x) we have that x ∈ µ−1

C̃
(α, 1]. So

µ−1

Ã
(α, 1] ∩ µ−1

B̃
(α, 1] ⊂ µ−1

C̃
(α, 1].

STEP 3: The second inclusion in (7.9) holds.

By Step 1 we may assume that µ−1

C̃
(α, 1] 6= ∅. Let thus x be such that µC̃(x) > α.

Since µÃ(x) ∨ µB̃(x) ≥ µC̃(x). we have

µ−1

C̃
(α, 1] ⊂ µ−1

Ã
(α, 1] ∪ µ−1

B̃
(α, 1].

Then x ∈ µ−1

Ã
(α, 1]∪µ−1

B̃
(α, 1] and thus µC̃(α, 1] is between µ−1

Ã
(α, 1] and µ−1

B̃
(α, 1].

�

Let now σ be a measure on X satisfying the properties of Definition 3.6 and
let η be a strictly positive measure on [0, 1] We define (assuming the integrals well
defined)

(7.13) D(µÃ, µB̃) =

∫ 1

0

(∫
X

(
1µ−1

Ã
(α,1]∆µ−1

B̃
(α,1](x)

)
dσ(x)

)
dη(α).

Theorem 7.3. Assuming the integral well defined, (7.13) defines a metric, and µC̃
is pointwise between µÃ and µB̃ if and only if the equality holds in the triangle
inequality for this metric.

Proof. By Proposition 4.3, we have that for every α ∈ [0, 1] the formula∫
X

1A∆B(x)dσ(x)

defines a metric on P(X). Then (7.13) is an integral of metrics and Thus a metric.
15
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To prove the claim in the theorem we go along the lines of Proposition 4.4, using
(4.14) with A replaced by µ−1

Ã
(α, 1] and similarly for B and C. We can write:

0 ≤ D(µÃ, µC̃) +D(µC̃ , µB̃)−D(µÃ, µB̃) =

= 2

∫ 1

0

(∫
X

(
1µ−1

Ã
(α,1](x)− 1µ−1

C̃
(α,1](x)

)(
1µ−1

B̃
(α,1](x)− 1µ−1

C̃
(α,1](x)

)
dη(x)

)
dσ(α)

= 2

∫ 1

0

((∫
µ−1

Ã
(α,1]∩µ−1

B̃
(α,1]

(
1− 1µ−1

C̃
(α,1](x)

)
dη(x)+

+

∫
X\(µ−1

Ã
(α,1]∪µ−1

B̃
(α,1])

1µ−1

C̃
(α,1](x)dη(x)

))
dσ(α)

By the assumed properties on dσ(α) we have therefore equality in the triangle in-
equality if and only if∫
µ−1

Ã
(α,1]∩µ−1

B̃
(α,1]

(
1− 1µ−1

C̃
(α,1](x)

)
dη(x) =

∫
X\(µ−1

Ã
(α,1]∪µ−1

B̃
(α,1])

1µ−1

C̃
(α,1](x)dη(x) = 0

and the end of the proof is as in the proof of Proposition 4.4. �

8. The hyperbolic numbers

Complex numbers can be constructed as matrices of the form

(
a −b
b a

)
, where

a, b ∈ R and can be viewed (when (a, b) 6= (0, 0)) as composition of an homothety
and a rotation in the plane:

ρ

(
cos θ − sin θ
sin θ cos θ

)
Hyperbolic number in turn are symmetric matrices of the form

(8.1)

(
a b
b a

)
=

1√
2

(
1 1
1 −1

)(
a+ b 0

0 a− b

)
1√
2

(
1 1
1 −1

)
and can be seen when a2−b2 6= 0 as composition of an homothety and an hyperbolic
rotation

ρ

(
cosh θ sinh θ
sinh θ cosh θ

)
.

Then hyperbolic numbers from a family of pairwise commuting matrices; we refer
to [34, 35] for more information on these numbers.

It will be convenient to set

(8.2) U =
1√
2

(
1 1
1 −1

)
.

Note that

U = U t and U2 = I2.

We have

(8.3)

(
a −b
−b a

)
=

1√
2

(
1 1
1 −1

)(
a− b 0

0 a+ b

)
1√
2

(
1 1
1 −1

)
16
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and

(8.4)

(
a b
b a

)(
a −b
−b a

)
= (a2 − b2)I2

Not every non-zero hyperbolic number is invertible but the formula

(8.5)

(
a b
b a

)−1

=
1

a2 − b2

(
a −b
−b a

)
, a2 − b2 6= 0,

shows in particular that the set of hyperbolic numbers for which a2 − b2 6= 0 form a
multiplicative Abelian group of matrices, a subgroup of which consists of the matri-
ces for which a2 − b2 = 1.

Thus:

Lemma 8.1. The hyperbolic number satisfies

(8.6) 0 ≤
(
a b
b a

)
≤
(

1 0
0 1

)
if and only if it holds that

(8.7) 0 ≤ a+ b ≤ 1 and 0 ≤ a− b ≤ 1.

Proof. This is a direct consequence of (8.1). �

Note that in the (a, b) plane the set (8.7) is the square with vertices

(0, 0), (1/2, 1/2), (−1/2,−1/2) and (1, 0).

Definition 8.2. We denote by D the set of hyperbolic numbers satisfying (8.7).

b

a

b = a

b = a-1

b =1-a

b = -a

Figure 1. The set D

For z =

(
a b
b a

)
and w =

(
c d
d c

)
in H, we define

z ∨ w =
1√
2

(
1 1
1 −1

)(
(a+ b) ∨ (c+ d) 0

0 (a− b) ∨ (c− d)

)
1√
2

(
1 1
1 −1

)
=

1

2

(
(a+ b) ∨ (c+ d) + (a− b) ∨ (c− d) (a+ b) ∨ (c+ d)− (a− b) ∨ (c− d)
(a+ b) ∨ (c+ d)− (a− b) ∨ (c− d) (a+ b) ∨ (c+ d) + (a− b) ∨ (c− d)

)
(8.8)

17
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and

z ∧ w =
1√
2

(
1 1
1 −1

)(
(a+ b) ∧ (c+ d) 0

0 (a− b) ∧ (c− d)

)
1√
2

(
1 1
1 −1

)
=

1

2

(
(a+ b) ∧ (c+ d) + (a− b) ∧ (c− d) (a+ b) ∧ (c+ d)− (a− b) ∧ (c− d)
(a+ b) ∧ (c+ d)− (a− b) ∧ (c− d) (a+ b) ∧ (c+ d) + (a− b) ∧ (c− d)

)
.

(8.9)

Proposition 8.3. The set H with the above functions ∨ and ∧ is a lattice when
endowed with the partial order of matrices.

Proof. It holds that

(8.10) z ∧ w ≤ z ≤ z ∨ w and z ∧ w ≤ w ≤ z ∨ w.

We now discuss the uniqueness of the functions ∨ and ∧. Given z, w ∈ D we consider
positive hyperbolic numbers m and M such that

(8.11) m ≤ z ≤M and m ≤ w ≤M

We note that m and M are not unique, and two hyperbolic numbers m1 and m2

satisfying (8.11) need not be comparable. But any m and M which satisfy (8.11)
will also satisfy

(8.12) m ≤ z ∧ w and z ∨ w ≤M.

�

As a corollary:

Corollary 8.4. In the above notation, z ∧ w and z ∨ w are uniquely determined to
be respectively the largest and smallest hyperbolic numbers satisfying (8.12).

We now define the counterpart of an interval in the hyperbolic setting. Given
two elements z, w ∈ H, the characterization via (3.1) is not the one to consider here.
Indeed the set

{c(t) = z ∧ v + t(z ∨ w − z ∧ v), t ∈ [0, 1]}
need not contain z or w, as illustrated by the following example. Take

(8.13) z = U

(
1 0
0 2

)
U, w = U

(
3 0
0 0

)
U.

Then

(8.14) z ∧ w = U

(
1 0
0 0

)
U, z ∨ w = U

(
3 0
0 2

)
U.

Thus the interval

[z ∧ w, z ∨ w] =

{
U

(
1 + 2t 0

0 2t

)
U, t ∈ [0, 1]

}
does not contain z or w.

Recall now that D was defined by condition (8.7) and denotes the set of positive
hyperbolic numbers less or equal to I2.

18
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Definition 8.5. Let z, w ∈ H. We define the interval

(8.15) [z, w]H = {c(τ) = z ∧ w + τ (z ∨ w − z ∧ w) , τ ∈ D} .

Proposition 8.6. [z, w]H can be characterized as:

[z, w]H = {v ∈ H : z ∧ w ≤ v ≤ z ∨ w}

Proof. Let

τ = U

(
t1 0
0 t2

)
U, t1, t2 ∈ [0, 1]

z = U

(
λ1 0
0 λ2

)
U, w = U

(
µ1 0
0 µ2

)
U, and v = U

(
v1 0
0 v2

)
U.

We can write

c(τ) = U


λ1 ∧ µ1 + t1(λ1 ∨ µ1 − λ1 ∧ µ1)︸ ︷︷ ︸

v1(t1)

0

0 λ2 ∧ µ2 + t2(λ2 ∨ µ2 − λ2 ∧ µ2)︸ ︷︷ ︸
v2(t2)

U.

(8.16)

But, for j = 1, 2 and as tj varies from 0 to 1 we have that vj(tj) varies from λj ∧ µj
to λj ∨ µj . Hence, the representation (8.16) for c(τ) is equivalent to

z ∧ w ≤ c(τ) ≤ z ∨ w.

�

Definition 8.7. Let z, w, u ∈ H. We say that u is between z and w, if u ∈ [z, w]H,
that is

z ∧ w ≤ u ≤ z ∨ w.

We note that the notion if betweenness is not transitive. Restle already had
examples of lack of transitivity for sets.

Example 8.8. Take z and w as in (8.13), with minimum and maximum as in (8.14)
and

u = U

(
2 0
0 0

)
U, v = U

(
5 0
0 1/2

)
U.

Then

u ∧ v = U

(
2 0
0 0

)
U, u ∨ v = U

(
5 0
0 1/2

)
U,

and

z ∧ v = U

(
1 0
0 1/2

)
U, z ∨ v = U

(
5 0
0 2

)
U

Thus u ∈ [z, w]H , w ∈ [u, v]H but u 6∈ [z, v]H .
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To conclude this section we note that we can write

(8.17) z = (a+ b)P + (a− b)Q,

where P and Q denote the orthogonal projections

(8.18) P =
1

2

(
1
1

)(
1 1

)
and Q =

1

2

(
1
−1

)(
1 −1

)
.

We further note that

(8.19) P 2 = P, Q2 = Q,

(8.20) PQ = QP = 0

and

(8.21) P +Q = I2,

and that

(8.22) P =
1

2

((
1 0
0 1

)
+

(
0 1
1 0

))
and

(8.23) Q =
1

2

((
1 0
0 1

)
−
(

0 1
1 0

))
.

Representation (8.17) is called the idempotent representation of the hyperbolic num-
ber. In this work we chose to write hyperbolic numbers as matrices; one could also
use the more traditional notation

z = a+ bk

where k 6∈ R satisfies k2 = 1 (in the matrix notation, we have k =

(
0 1
1 0

)
).

9. D-valued membership functions

Definition 9.1. Let X be a set. An hyperbolic-valued membership function on X
is a D-valued map, i.e. a H-valued map, say M , satisfying

(9.1) 0 ≤M(x) ≤ I2, x ∈ X.

Theorem 9.2. M(x) is an hyperbolic-valued membership function if and only if
there exist two membership functions µ

Ã1
and µ

Ã2
corresponding to the fuzzy sets

Ã1 and Ã2 respectively such that

(9.2) M(x) =
1

2

(
µ
Ã1

(x) + µ
Ã2

(x) µ
Ã1

(x)− µ
Ã2

(x)

µ
Ã1

(x)− µ
Ã2

(x) µ
Ã1

(x) + µ
Ã2

(x)

)
.

Proof. Following (8.1), we write
(9.3)

M(x) =

(
a(x) b(x)
b(x) a(x)

)
=

1√
2

(
1 1
1 −1

)(
a(x) + b(x) 0

0 a(x)− b(x)

)
1√
2

(
1 1
1 −1

)
.
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By (8.7), both a(x) + b(x) and a(x) − b(x) take values in [0, 1] and then are

(classical) membership functions, corresponding to fuzzy sets say Ã1 and Ã2:

a(x) + b(x) = µ
Ã1

(x) and a(x)− b(x) = µ
Ã2

(x).

Thus

(9.4) M(x) =
1√
2

(
1 1
1 −1

)(
µ
Ã1

(x) 0

0 µ
Ã2

(x)

)
1√
2

(
1 1
1 −1

)
.

Formula (9.2) follows. �

We will use the notation
M(x) = M

Ã1,Ã2
(x)

and denote the fuzzy set as the pair (Ã1, Ã2). One has

(9.5) (µ
Ã1
∧ µ

Ã2
)I2 ≤MÃ1,Ã2

(x) ≤ (µ
Ã1
∨ µ

Ã2
)I2

It follows from (9.5) that M
Ã1,Ã2

defines a set “between” the intersection and the

union of the two fuzzy sets µ
Ã1
∧ µ

Ã2
and µ

Ã1
∨ µ

Ã2
.

We also note that we can rewrite M
Ã1,Ã2

(x) as the idempotent representation

(9.6) M
Ã1,Ã2

(x) = µ
Ã1

(x)P + µ
Ã2

(x)Q,

where P and Q are as in (8.18).

Definition 9.3. Let α =

(
α1 α2

α2 α1

)
be a positive hyperbolic number less or equal

to I2. We define the α-cut of the hyperbolic fuzzy set M
Ã1,Ã2

to be

(9.7)
{
x ∈ X ;M

Ã1,Ã2
(x) > α

}
By (8.1) we see that (9.7) is equivalent to

µ
Ã1

(x) > α1 + α2(9.8)

µ
Ã2

(x) > α1 − α2,(9.9)

corresponding to the (possibly empty) α-cuts (Ã1)α1+α2 and α-cuts (Ã2)α1−α2 .

Remark 9.4. When µ
Ã1

= 1A1 and µ
Ã2

= 1A2 for some subsets A1 and A2 of X

we have
M
Ã1,Ã2

(x) = 1A1(x)P + 1A2(x)Q

and
1A1∩A2

I2 ≤MÃ1,Ã2
(x) ≤ 1A1∪A2

I2

When
µ
Ã1

(x) ≥ µ
Ã2

(x) ∀x ∈ X,
both the functions

µATA(x) =
µ
Ã1

(x) + µ
Ã2

(x)

2
(9.10)

νATA(x) =
µ
Ã1

(x)− µ
Ã2

(x)

2
(9.11)
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are membership functions, and such that

µATA(x) + νATA(x) ≤ 1,

and define an Atanassov intuitionistic fuzzy set.

Definition 9.5. The hyperbolic fuzzy set is called an Atanassov hyperbolic fuzzy
set, if

µ
Ã1

(x) ≥ µ
Ã2

(x) ∀x ∈ X
Proposition 9.6. The product of two Atanassov hyperbolic fuzzy sets is an Atanassov
hyperbolic fuzzy set.

Proof. Let M
Ã1,Ã2

(x) and M
B̃1,B̃2

(x) be the two Atanassov hyperbolic fuzzy set.

Then
µ
Ã1

(x) ≥ µ
Ã2

(x) and µ
B̃1

(x) ≥ µ
B̃2

(x) ∀x ∈ X.
Thus

µ
Ã1

(x)µ
B̃1

(x) ≥ µ
Ã2

(x)µ
B̃2

(x) ∀x ∈ X.
So the answer. �

10. Properties of hyperbolic membership functions

In this section we consider the counterparts in the hyperbolic setting of the clas-
sical operators on fuzzy sets. We define

(10.1) M
C(Ã1,Ã2)

(x) = I2 −MÃ1,Ã2
(x)

and it is easy to verify that

(10.2) M
Ã1,cl(Ã1)

(x) =
1

2

(
1 2µ

Ã1
(x)− 1

2µ
Ã1

(x)− 1 1

)
Furthermore, using (9.6) and (8.20) we have:

Proposition 10.1. Let Ã1, Ã2, B̃1 and B̃2 be fuzzy sets with membership functions

Ã1, Ã2, B̃1 and B̃2 respectively. Then we have

(10.3) M
Ã1,Ã2

(x)M
B̃1,B̃2

(x) = µ
Ã1

(x)µ
B̃1

(x)P + µ
Ã2

(x)µ
B̃2

(x)Q.

Thus the matrix product of the hyperbolic membership functions M
Ã1,Ã2

and

M
B̃1,B̃2

corresponds to the algebraic product (See Section 5 and [10, §3.3. p. 33])

of the fuzzy sets Ã1 and B̃1 along P and Ã2 and B̃2 along Q.

Proposition 10.2. In the above notations it holds that:

(10.4) M
Ã1,Ã2

(x)M
Ã2,Ã1

(x) = µ
Ã1

(x)µ
Ã2

(x)I2

Proof.

M
Ã1,Ã2

(x)M
Ã2,Ã1

(x) = µ
Ã1

(x)µ
Ã2

(x)P + µ
Ã2

(x)µ
Ã1

(x)Q = µ
Ã1

(x)µ
Ã2

(x)I2

�

By (8.9), we have

(10.5) M
Ã1,Ã2

(x) ∨M
B̃1,B̃2

(x) = (µ
Ã1

(x) ∨ µ
B̃1

(x))P + (µ
Ã2

(x) ∨ µ
B̃2

(x))Q.
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11. Betweenness for hyperbolic-valued membership functions

The proofs of the results in this section are easily adapted from the proofs in the
scalar case by considering the idempotent decomposition, as in previous arguments
in the paper, and we will not write out the details.

Definition 11.1. Let M
Ã1,Ã2

, M
B̃1,B̃2

and M
C̃1,C̃2

be three hyperbolic-valued mem-

bership functions defined on the set X. One says that M
C̃1,C̃2

is pointwise between

M
Ã1,Ã2

and M
B̃1,B̃2

, if

(11.1) M
Ã1,Ã2

(x) ∧M
B̃1,B̃2

(x) ≤M
C̃1,C̃2

(x) ≤M
Ã1,Ã2

(x) ∨M
B̃1,B̃2

(x), x ∈ X.

In the setting of D-valued membership functions Lemma 4.2 and Proposition 6.2
become:

Proposition 11.2. Let M
Ã1,Ã2

,M
B̃1,B̃2

and M
C̃1,C̃2

be D-valued membership func-

tions. Then M
C̃1,C̃2

is pointwise between M
Ã1,Ã2

and M
B̃1,B̃2

if and only if

(11.2) M
C̃1,C̃2

(x) = M
Ã1,Ã2

(x) ∧M
B̃1,B̃2

(x) +M
Z̃1,Z̃2

(x),

where M
C̃1,C̃2

(x) is a D-valued membership function satisfying

(11.3) M
Z̃1,z̃2

(x) ≤M
Ã1,∨A2

(x) ∨M
B̃1,B̃2

(x)−M
Ã1,Ã2

(x) ∧M
B̃1,B̃2

(x), x ∈ X.

Furthermore, the idempotent decomposition (8.17) gives:

Proposition 11.3. In the notation of the previous proposition, M
C̃1,C̃2

is pointwise

between M
Ã1,Ã2

and M
B̃1,B̃2

if and only if C̃1 and C̃2 are pointwise between Ã1 and

B̃1 and Ã2 and B̃2 respectively.

The hyperbolic counterparts of Definition 7.1 and Theorem 7.2 in the hyperbolic
setting are:

Definition 11.4. Let a ∈ D. The a-cut associated to the D-valued membership
function M

Ã1,Ã2
is the set of elements M−1

Ã1,Ã2
.

Theorem 11.5. M
C̃1,C̃2

is a-between M
Ã1,Ã2

and M
B̃1,B̃2

if and only if M
C̃1,C̃2

is

pointwise between M
Ã1,Ã2

and M
B̃1,B̃2

.

We conclude with a counterpart of Theorem 7.3 for hyperbolic-valued membership
functions. The novelty is what one now needs the H-valued counterpart of a distance
to get a triangle equality. Here too the proof is easy, going via the idempotent
decomposition (8.17), and will be omitted. With D(µÃ, µB̃) as in (7.13) we define

(11.4) DH(M
Ã1,Ã2

,M
B̃1,B̃2

) = U

(
D(µ

Ã1
, µ
B̃1

) 0

0 D(µ
Ã2
, µ
B̃2

)

)
U.

Theorem 11.6. Assuming the integral well defined, M
C̃1,C̃2

is pointwise between

M
Ã1,Ã2

and M
B̃1,B̃2

if and only if the equality holds

DH(M
Ã1,Ã2

,M
B̃1,B̃2

) = DH(M
Ã1,Ã2

,M
C̃1,C̃2

) +DH(M
C̃1,C̃2

,M
B̃1,B̃2

).
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12. Conclusion

Hyperbolic numbers had recently numerous applications to machine learning (See
e.g. [14, 15] and allow the extension of the notion of probability to a wider setting,
where a probability has two components rather than being a scalar number (See
[16]). Combined with the notion of fuzzy sets one gets, as illustrated in the present
paper, new ways to consider uncertainty.
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